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The nonlinear problem of diffraction of a weak shock wave near a rigid wall with 
a kink is examined. The solution of the problem in linear formulation leads to 
the appearance of a singularity at the point of intersection of the initial and dif- 

fracted fronts. Subsequent approximations do not remove this singularity. The 
reported attempt by de Mestre [l] to remove this singularity leads to considerable 

mathematical difficulties which cannot be completely overcome. 
In this paper the method of matched asymptotic expansions @] is applied. and 

a uniformly applicable solution of the problem is constructed in the first appro- 
ximation. The solution of the problem in the acoustic formulation [3, 41 is used 

for the external solution. The internal problem is reduced to the solution of the 
nonlinear problem in the theory of short waves [5]. 

1. Let us examine the propagation of a plane weak shock wave through a quiescent, 

ideal, polytropic gas along a rigid wall with a kink ct. The system of coordinates is 

selected as shown in Fig. la. The rate of 

q 

n propagation of the shook wave U,is deter- 
minated by its intensity 
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Here p, a, x are pressure, speed of sound 

Fig. 1 and the ratio of heat capacities, respec- 

tively. The subscript 0 corresponds to 
gas parameters ahead-of the shock wave,the subscript 1 behind the shock wave. At the 
instant t = 0 the shock wave passes through the point of the kink in the wall 0. As the 

shock wave propagates further along the inclined wall OC , expansion waves arise. 
Through interaction with these expansion waves the shock front .AC is bent while the 
pressure along the front declines from the value p1 at the point A to the value p. in the 
direction of the wall. The diffraction (perturbation) region is closed from above by the 

boundary AB which represents the front of the wave of perturbation arising at the point 
0 and the time t = 0. 

In the diffraction region CABC the components of velocity U, c, the pressure p, the 
density p, and the entropy S satisfy the equations of dynamics (motion, continuity, state, 
energy) 

Uf + U% + vuy + $P,=O. Vl + uv, + vvy + L p Pv=O (1.2;. 

Pt + (UPL + @P)v = 0, P = P (P9 S), St + us, + vs, = 0 

For weak shock waves we can neglect the entropy change in the entire region of diffrac- 
tion and to assume the flow to be irrotational to the order of &s inclusive. Let us intro- 
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duce the velocity potential Q 

@‘x = u, CD, =f V 

and write the equation of state in the following form: 

+~=[(*Jx_l] (1.3) 

The absence of characteristic dimensions of length and time in the problem permits to 

introduce dimensionless independent and dependent variables 

2 = a,& cos 8, y = a,fr sin 8, @ = aeQf (r, 0) (1.4) 

u = a,u*, v = a*u*, a = a,a*, P = poa2P7 p = pop*, u* = a#)uo* 

From equations of motion (1.2) and (I, 3), utilizing (1.4). we can obtain an equation 

[l, S] for the potential j 

(1 - rs) f,, -i- + ff.++J=(~-W - rf,) (f,, + f f, + f feel i- 

+ -&J* (fs - &A) - 2rf,f,.,. f + feZfee + -g frfefvl + fr2frr - 

and also the Bernoulli equation 

e” = (1 + $#)=-‘I’: = 1 - (~-1)(f-rfr+$fr2+~feZj (1.6) 

The superscripts on variables have been omitted. Let us formulate the conditions on the 
boundary of the diffraction region. On the rigid wall BOC 

fe = 0 for 6 = - a and 6 = JC (1.7) 

The location of points r = r (a) of the front of perturbation AB is determined 
through the velocity of sound a, and the normal component of the gas velocity with 
respect to the front ZJ~,, by the equation 

r[~+($~z~‘=r~l,z+a,, ~ln=(il~-~f~~~[~+~~~~” (3.8) 

On the perturbation front .&B the following conditions of continuity of velocity and 

pressure hold f, = fW fe = fret P = P, (1.9) 

Here the velocity potential tr and the relative excess pressure P L of the homogeneous 
flow behind the front of the shock wave AK have the following form according to(l.1) 

(\ 
x _A_ 1 -‘I2 

fl = c: (cr cos 8 - I), c= 1+-y-E 
J 

( P, = E (1.10) 

The equation of the shock wave front AC has the form 

r = /C (0) (1.11) 

On the shock wave front AC the following conditions of dynamic compatibility hold 

%=&KWVl, I/‘, = k [l + (Cjaj-” (1.12) 

us = 0, 
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Expressing the normal component u,,and the tangential component U, of the velocity 
behind the shock wave front in terms of the components of velocity f, and fa, we obtain 

the following differential equation of the front from conditions (1.12) : 

-&{k[l +(qp-+f, (1.13) 

We also obtain the conditions 
k’f, + fe = 0, P = lif, (1.14) 

In this manner the problem is reduced to the integration of a system of nonlinear 
equations (1.5) and (1.6) with boundary conditions (1. ‘I)-(1.9), (1.13) and (1.14). This 
is connected with considerable mathematical difficulties. 

2. In the construction of a solution for the diffraction region of weak shock waves 
it is customary to use the method [l, S] of asymptotic expansion with respect to the 

small parameter e 

f (r, 8, E) = &f(l) (r, 0) + e2f2’ (r, 0) + . . ., P = eP(') + E2P(?) + . . . (2.1) 

For the first terms of expansion of f(l) and P(l) we obtain from equations (1.5). (1.6) a 
system of linear equations 

(1 - r2) fvr(l) + f f).(l) + f fee(l) = 0, p(1) = rfrW _ f(l) (2.9 

In the linear formulation the front of the shock wave 

r = 1 + EM’) (0) + E2 W) (e) + . . . (2.3) 

is examined as a front of weak perturbations (f, = fe = 0) and we obtain in accord- 
ance with (1.13) 

fr(l) = & k(1) = 0, k(l) (cl) s 0 (2.4) 

The boundary conditions (1.7)-(1.9),(1.13) and (1.14) for potential f(l) in the first 
approximation assume the following form 

fa(l) = 0 for 0 ,( r< 1, 6 = - a, and 6 = .rl 

frP) = cos 0, fe(‘) = - sin + for r = 1, 0 < 8 < X (2.3) 
fr(l) = 0, f&l) = 0, for r = 1, - u < 8 < 0 

Utilizing the Chaplygin transformation 

Q = r-1 (1 - 1/I - P) (2.6), 

and eliminating f(l) from the system (2.2). we obtain the Laplace equation for P(l) 

P~a(~ + $p,cl)+$p,c"=0 (2.2) 

with boundary conditions according to (2.2). (2.3), (2.5) 

P,(l) = 0 for O<o,(i, 8 = -aa.and8 = n 

pw = f for a=l, o<ee (2.8) 

pm = 0 for u=& -a&y0 

The solution of Eq. (2.7) with boundary conditions (2.8) was examined in a series of 
papers p, 41 and can be represented in the form [l. 43 

p(l) = 1 - + arctg 
1 

i-2 
- ctg + e} + 
1+ ax 

(2.9). 
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Fig. ‘2 11X1. Y==---1. for 8 = I. I’=1 (3.8) 

In the case of negative values of the argument, the values of arctangents in (8. 9) are 
taken on the other branch according to the formula 

arctg 7 = x - arctg (- 7) (2.10) 

In Fig. lb the pressure field in the diffraction region is shown qualitatively according 

to the solution (2.9). At the point A (7. = 1, 8 = 0) the solution (‘2.9) has a singu- 

larity. The pressure P(l) changes in a jump from the value P(l) = 0 on _fC toP’l’= 
= ion AB. This singularity is a result of the physical defect in the acoustic formula- 

tion when the pressure along the diffraction front -AC is constant while the front itself 
represents an acoustic region r = 1. The formulation of the second approximation does 

not remove the indicated singularity, as was shown in [l]. This leads to the necessity to 

examine the problem of diffraction as a problem of singular perturbations 121 for the 

expansion (2.1). 

3, In order to construct a solution which removes the singularity of the acoustic theory 
in the vicinity of the point -4, we change to internal variables [2] 

I’ = 1 +- I,/2 (x + 1) e”6, 8 = I& (x - 1) EY- (3.1) 

The potential i and the pressure P are represented in the form 

f=& @+ F(l) (6, Y) + . . .( p = $p(l) ” . . . (3.2) 

Substituting (3.1) and (3.2) into the system (1.5),(1.6) and conditions (1.8), (1.9).(1.13). 
(1.14) and comparing the orders of higher terms of the left and right sides in Eqs. (1.5), 

(1.6), we obtain CL = 2, p = 1, y = 1, 0 = ‘/” _ (3.3) 
Introducing the notation 

(1) _ 
Fa --P? 

(1) FY =v 

we obtain according to (1.5) and (1.6) the following system of nonlinear equations for 
the first terms of expansion (3. ‘2) (single-terg internal expansion) : 

2(p - 6)ps + vy + p = 0, py = Tg. P) = p (3.4j 

Conditions (1.8) and (1.9) on the boundary of the diffraction region assume the form 

(Fig. 2a) 
IL = 1. \’ = - I’, pl.l’ = 1 for 6 = 1 (3.5) 

From (I. 13) and (1.14) we obtain the equation of the shock wave front -.i’c’ 

i dG/dY = \f3s: - p (3.6) 

and the following conditions on the front 

p = p, pdG,idY + v = 0 (3.7) 
The Hugoniot condition on the front p,=Pc’l 
is satisfied automatically, according to the 
third equation of (3.4). Making use of(3.5)- 
(3.7). we obtain in the point -4’ where the 
front _-i’c’ intersects with the line ,1’B 
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We note that for values of (i ’ . . F’ the condition on the wall ROC 

v~1.i for I-:=-- a 

1/1/e (Z + 1) E 
and Y = 

VI/? (:y 1) E 
(3.9) 

must be discarded as external. 
The system of equations (3.4) represents a known system of equations for short waves 

[S, 73. We shall seek a solution for Eq. (3.4) with boundary conditions (3.5)-(3.7) in 

the following form [5]: 

b; = _-l/3y2 t$ (bf!, ;- ~1 T Bsin”(by Cc) t l/,b_lsin2(bp+c) + p (3.10) 

1’ = [O-l t,g (61-L $ c ) - {I] Y, b, c, B = const 

Satisfying condition (3.5), we obtain c = - b. The arbitrary constant b is determined 

in the process of matching the external expansion (2.9) with the internal expansion 
(3.10). The constant B is determined in the process of satisfying the condition of con- 

servation of the tangential component (3.7) on the front il’C’. 

4. We follow the method of matched asymptotic expansions [2]. we express the exter- 
nal solution (2.9) in internal variables (3.1) and retain the first term in the expansion 

with respect to e (single-term internal expansion). Then, taking into account (2.10). 

we obtain 
(4.1) 

Writing the internal solution (3.10) in external variables r and 8 (3.1) and retaining 
the first term of the expansion with respect to E (single-term external expansion), we 

obtain the following expression by rewriting the result in internal variables 6 and Y : 

p=P 0) = 1 + Jf=z5 $ arctg 7 (4.2) 

Comparing (4.1) and (4.2). we determine the value of the constant 

b=--n (4.3) 

6. The differential equation of the shock wave front according to (3.6), (3. lo), (4.3) 

has the form 
dP YL?M + 111 1/(2BLz - 2;1-‘LM + p,) .\I’ - Y”LZ.? 

dY= n~“L + ~1s (.]I” - L2 + 1 - 2nBL.U) (5.1) 

L = sin x (1 - p), n/r = cos n (1 - p) 
B = const 

We integrate Eq. (5.1) and construct the shock wave front from the point A’. where 
p = 1 and Y = 1. Then, satisfying the con- 

P t 

ISZI 

dition of conservation of tangential component 
(3.7) at the point with the coordinate Y = 0 
where according to (3.10) p = li, , we obtain 

A5 the value B = 0.43 for the constant B. 
In Fig.Ba the qualitative picture of pressure 

Y distribution is shown in the diffraction region. 
-3 -2 -/ Q 1 Constant pressure (velocity) lines near the front 

Fig. 3 ._1’C’ are constructed in Fig. 2b according to 
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solution (3.10) in the system of coordinates Y = Y and X = 6 - ‘/,Y’ p]. The 
pressure distribution near (Fig. 2b) and along (Fig. 3) the shock wave front A’C’ is con- 

sistent with the pressure distribution in the external region where the flow described by 
the solution (2.9) and for the condition a > e ‘I*, does not depend on the angle of the 

kink of the wall. For angles a - () (a%) where the condition a > e’i* isnot satisfied, 
solutions (2.9) and (3.10) cannot be used. In this case the pressure along the front A’C’ 
falls to the value pc > p,, on the wall and the boundary condition (3.9) on the wall 
v = 0 for Y = - cdl/‘/, (X + 1) e must be already satisfied in the solution of the 

internal problem (3.4)-(3.7). 

In conclusion we note that a solution of the form (3.10) was utilized in [S] for the 
construction of flow near the front of the reflected wave in the problem of shock wave 

reflection from a rigid wall. with a kink. With reference to the remarks presented above 

it appears to the authors, however, that it is not justified to use solutions (3.10) in the 
problem on reflection [8] in the case of small angles of the kink of the wall, 

The authors express their gratitude to S. V. Fal%ovich for advice in the discussion of 
this work. 
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